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Abstract
In our previous papers we proposed a continuum model for the dynamics of
the systems of self-propelling particles with conservative kinematic constraints
on the velocities. We have determined a class of stationary solutions of this
hydrodynamic model and have shown that two types of stationary flow, linear
and axially symmetric (vortical) flow, are possible. In this paper we consider
the stability properties of these stationary flows. We show, using a linear
stability analysis, that the linear solutions are neutrally stable with respect
to the imposed velocity and density perturbations. A similar analysis of the
stability of the vortical solution is found to be not conclusive.

PACS numbers: 05.65.+b, 47.32.−y, 87.10.+e

1. Introduction

The dynamics of the systems of self-propelling particles (SPP) is of a great interest for
physicists as well as for biologists because of the complex and fascinating phenomenon of the
emergence of the ordered motion. In nature these systems are represented by flocks of birds,
schools of fishes, groups of bacteria, etc [1, 3]. From the physical point of view many aspects
of the observed non-equilibrium phase transition from disordered to ordered motion are to a
large extent still an open problem.

The first numerical model simulating the behaviour of the SPP was proposed by Vicsek
et al [4]. For shortness we call it the Czirók–Vicsek automaton or algorithm (CVA). The model
is based on a kinematic rule imposed on the orientations of the velocities of the self-propelling
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particles. At a low-noise amplitude and a high density it was shown that the system undergoes
the transition from the disordered state to coherent motion. There is strong support that the
transition is of continuous character which assumes that one may use the approach similar
to that for equilibrium continuous order–disorder phase transitions. In particular, the powerful
technique of renormgroup analysis allows us to get the critical exponents for the velocity
correlation functions [5, 6]. It is natural that the investigation of the continuous models
in different aspects for self-propelling systems at least allows us to avoid the difficulties in
distinguishing the physical factors from the artificial numerical effect [7].

The dynamics of Vicsek’s model was also investigated in the framework of graph theory.
In [8], the spontaneous emergence of ordered motion has been studied in terms of so-called
control laws which govern the dynamics of the particles. Generalizations of the control laws
were considered in [9, 10]. In particular, in [10] it was shown that the organized motion of
SPP with the control laws depending on the relative orientations of the velocities and relative
spacing can be of two types only: parallel and circular motion. The stability properties of
these discrete updating rules (including Vicsek’s model) and the dynamics they describe were
considered using Lyapunov theory in [8, 9, 11].

In our first paper [12] we constructed a hydrodynamic model for the system of self-
propelling particles with conservative kinematic constraints, which can be considered as a
continuum analogue of the discrete dynamic automaton proposed by Vicsek et al.

Based on the conservation of the kinetic energy and the number of particles our model is
represented by the following equations:

dv(r, t)
dt

= ω(r, t) × v(r, t), (1)

∂n

∂t
+ ∇ · (n(r, t)v(r, t)) = 0, (2)

where v(r, t) and n(r, t) are the velocity and the density fields respectively, and ω(r, t) is an
angular velocity field which takes into account the non-potential character of the interactions
between the particles. We modelled this field as follows:

ω(r, t) =
∫

K1(r − r′)n(r′, t) rot v(r′, t) dr′ +
∫

K2(r − r′)∇n(r′, t) × v(r′, t) dr′, (3)

where K1,2(r − r′) are the averaging kernels. In particular, we considered a simple case of
averaging kernels:

Ki(r − r′) = siδ(r − r′), where i = 1 or 2. (4)

We call this the local hydrodynamic model (LHM). In such a case one may consider such
a continuum model as the particular case of the general hydrodynamical model considered
in [5] obeying the conservation rules of the CVA. The viscous Navier–Stokes term is absent
because of the dissipative-free character of the dynamics. In fact for the CVA the energy of the
chaotic motion at the low-noise level still can be transformed into the ordered motion. While
the viscosity for the ordinary fluid transmits the energy of the ordered motion into the heat. In
this case equation (3) reduces to

ω(r, t) = s1n(r, t) rot v(r, t) + s2∇n(r, t) × v(r, t), (5)

where

si =
∫

Ki(r) dr. (6)
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In our second paper [13] we have shown that the only regimes of the stationary planar motion
in our model are either of translational or axial symmetry. In this respect our continuum model
gives results similar with those obtained in the discrete model of Vicsek [4, 14].

In this paper we investigate the stability of the obtained regimes of motion with respect to
small perturbations. In the following section we consider the stability of the planar stationary
linear flow with respect to the velocity perturbation directed along the stationary flow and
perpendicular to the flow. We show that in both cases the evolution of the perturbations has
an oscillatory behaviour, which means that they neither grow nor decay with time. This can
be interpreted as neutral stability [15] of the corresponding stationary flow. Also the external
pressure term −∇p/n can be included into equation (1) in order to account for potential
external forces. In such a case with s2 = 0 there exists the special case of the incompressible
flows, n = const, when the equations of motion (1), (2) with (5) coincide with those for
potential flow of ideal fluids. As is known [15], such motion in 2D geometry is stable under
rather weak restrictions on the initial velocity field profile in the Lyapunov sense.

In the third section we consider the stability of the planar stationary axially symmetric
(vortical) motion of SPP with constant velocity and the density. We find that in this case the
linear analysis does not lead to a conclusive answer about the stability of the solution.

2. Stability of planar stationary linear flow in the local hydrodynamic model

2.1. Stability with respect to a velocity perturbation along the flow

In this section we consider the stability properties of planar stationary linear flow for the local
hydrodynamic model with s2 = 0, which we further call local the hydrodynamic model 1
(LHM1). At the end of the section we will shortly discuss how these results extend to the
local hydrodynamic models with s1 = 0 and s1 = s2. For LHM1, the stationary linear flow is
given by

v0(r) = v0ex and n0(r) = n0, (7)

where v0 and n0 are constants.
We consider velocity and the density perturbations of the following form:

v1(r, t) = v0A‖ eik·r eα‖t ex and n1(r, t) = n0B‖ eik·r eα‖t . (8)

The velocity perturbation chosen is directed along the stationary linear flow. Here A‖, B‖ are
constants, k = kxex + kyey is the wave vector and α‖ is an exponent, which determines the
time evolution of the perturbation.

Substituting the solution v(r, t) = v0 + v1(r, t), n(r, t) = n0 + n1(r, t) into equations (1)
and (2) we obtain the linearized system of equations

∂v1

∂t
+ (v0 · ∇)v1 = s1n0(rot v1) × v0, (9)

∂n1

∂t
+ ∇ · (n0v1) + ∇ · (n1v0) = 0. (10)

For perturbation (8) this system reduces to

∂v1

∂t
+ v0

∂v1

∂x
= 0, (11)

∂v1

∂y
= 0, (12)
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Figure 1. The total density field n(r, t)/n0 and the stationary solution n/n0 = 1 as a function of
x∗ = kxx and t∗ = kxv0t for ky = 0.

∂n1

∂t
+ v0

∂n1

∂x
+ n0

∂v1

∂x
= 0. (13)

Using equation (8) one may obtain the relation between α‖ and the wave number. From
equation (11) it follows that

α‖ = −ikxv0, (14)

whereas from the linearized continuity equation (13) we have

α‖ = −ikxv0
(A‖ + B‖)

B‖
.

Both the equalities are satisfied only in the case when A‖ = 0.
Thus, in the linear stability analysis with respect to small deviations of the velocity and

density fields, we obtain the following perturbed solution:

v = v0 ex, n = n0[1 + B‖ eikyy eikx(x−v0t)]. (15)

Taking the real part of the density perturbation we have

v = v0 ex, n = n0[1 + B‖ cos(k · r − kxv0t)]. (16)

The corresponding density field is shown in figure 1.
This flow equation (16) should satisfy the linearized system of the constraints

(conservation of the kinetic energy and the number of particles) which are imposed on any
solution of our model. This implies that the following conditions must be fulfilled:

∫
n1(r, t) dr = 0, (17)

∫ [
2n0(v0 · v1(r, t)) + n1(r, t)v2

0

]
dr = 0. (18)

Since v1(r, t) = 0 both conditions reduce to∫
n1(r, t) dr = n0B‖

∫
eikyy dy

∫
eikx(x−v0t) dx = 0. (19)

If one integrates equation (19) over the period of the integrand, one may see that this condition
is fulfilled.
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The obtained perturbed flow is an oscillatory field (perturbation oscillates with a frequency
α‖ as t → ∞) which means that the corresponding stationary solution is neither stable nor
unstable within the first-order perturbation theory. In other words, we may conclude that in
our local hydrodynamic model the stationary linear flow is neutrally stable with respect to a
small density field perturbations.

The stability analysis of the other possible hydrodynamic models with s1 = 0 or s1 = s2

gives qualitatively similar result.

2.2. Stability with respect to a velocity perturbation perpendicular to the flow

In this section we investigate the stability properties of the stationary linear flow in the LHM1,
equation (7), with respect to a velocity perturbation normal to the stationary flow. We consider
only a velocity perturbation, which we take in the form of a plane wave:

v1 = v0A⊥ eik·r eα⊥t ey, n1 = 0, (20)

where A⊥ is a constant, k is a wave vector and the exponent α⊥ describes the time evolution
of the perturbation.

Substituting the perturbation in the linearized equations (9) and (10) it follows that

∂v1

∂t
+ v0(1 − s1n0)

∂v1

∂x
= 0, (21)

∂v1

∂y
= 0 and ky = 0, (22)

which imply that

α⊥ = ikxv0(s1n0 − 1). (23)

Thus the time evolution of the perturbed velocity field is determined by the purely imaginary
exponent in equation (23):

v = v0 + v1(x, t) = v0[ex + A⊥ eikx(x+Vt) ey], n = n0, (24)

where the ‘phase speed’ is given by

V = v0(s1n0 − 1).

Taking the real part of the velocity perturbation we obtain as the final result

v = v0[ex + A⊥ cos[kx(x + Vt)] ey], n = n0. (25)

The corresponding velocity profile is shown in figure 2.
Since the velocity perturbation was taken to be normal to the unperturbed field and

n1 = 0, both of the constraints of the constancy of the kinetic energy and the number of
particles, equations (17) and (18), are satisfied.

As one may see the time-dependent part of the velocity perturbation is a finite oscillatory
function which means that the corresponding stationary solution is neutrally stable.

As in the previous section the stability analysis of the other possible hydrodynamic models
with s1 = 0 or s1 = s2 gives qualitatively similar result.

3. Stability of stationary vortical flow with constant velocity and density in the local
hydrodynamic model

As we have shown in our previous article [13] there are two classes of the stationary flows in
the LHM, linear and axially symmetric or vortical flow.
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Figure 2. The total velocity field v(x, t)/v0 and the stationary velocity field v0/v0 = 1 as a
function of x∗ = kxx and t∗ = kxVt .

The stationary vortical solution of the LHM1 (s2 = 0) is given by v0(r) = vϕ(r) eϕ,

n0(r) = n0(r), [12], where

vϕ(r) = Cst

2πr
exp

[
s1

∫ r

r0

dr ′

r ′n0(r ′)

]
. (26)

Here r0 is a cut-off radius of the vortex core and the constant Cst is determined by the circulation
of the core ∮

r=r0

v dl = Cst. (27)

We consider small perturbations v1(r, ϕ, t) of the velocity field and n1(r, ϕ, t) of the
density field. The linearized system in the LHM1 is then given by

∂v1

∂t
+ (v1 · ∇)v0 + (v0 · ∇)v1 = s1n0[(rot v1) × v0 + (rot v0) × v1] + s1n1(rot v0) × v0, (28)

∂n1

∂t
+ ∇ · (n0v1) + ∇ · (n1v0) = 0. (29)

In this section we consider the stability of a particular class of stationary vortical flow for
which the density is constant and given by n0 = 1/s1. Substitution in equation (26) results in
a constant velocity field v0 = vϕ eϕ = (Cst/2πr0) eϕ ≡ C eϕ . We write the small perturbation
in the general form

v1 = a(r, ϕ, t) er + b(r, ϕ, t) eϕ and n1 = n0c1(r, ϕ, t). (30)

For the projections of the velocity field v = v0(r) + v1(r, ϕ, t) together with the continuity
equation for the density field n = n0 + n1(r, ϕ, t) we have

∂a

∂t
− 2

bvϕ

r
+

vϕ

r

∂a

∂ϕ
= −vϕ

r

[
∂rb

∂r
− ∂a

∂ϕ

]
− bvϕ

r
− c1

v2
ϕ

r
, (31)

∂b

∂t
+

vϕ

r

∂b

∂ϕ
= 0, (32)

∂c1

∂t
+

1

r

[
∂ra

∂r
+

∂b

∂ϕ

]
+

vϕ

r

∂c1

∂ϕ
= 0. (33)



Stability properties of the collective stationary motion of self-propelling particles 2579

In order to simplify the problem we restrict our discussion to the case with the radial component
of the velocity perturbation being constant, i.e. a(r, ϕ, t) = const.

Then one can transform equations (31)–(33) into

∂b

∂t
+

vϕ

r

∂b

∂ϕ
= 0, (34)

∂b

∂r
= −c1vϕ

r
, (35)

∂c1

∂t
+

1

r

(
a +

∂b

∂ϕ

)
+

vϕ

r

∂c1

∂ϕ
= 0. (36)

The velocity perturbation must be a periodic functions of the angle ϕ and can therefore be
written as

b(r, ϕ, t) = vϕB(r) eimϕ eβt , (37)

where B(r) is a function of r,m is an integer and β is a constant factor, which describes the
time evolution of the perturbation, equation (30). Substituting this into equation (34) one
obtains

β = −im
vϕ

r
(38)

and consequently

b(r, ϕ, t) = vϕB(r) exp
[
im

(
ϕ − vϕ

r
t
)]

. (39)

From equation (35) it follows that

c1(r, ϕ, t) = −r

(
∂B(r)

∂r
+ im

vϕB(r)

r2
t

)
exp

[
im

(
ϕ − vϕ

r
t
)]

. (40)

Substituting this into equation (36) we obtain that a(r, ϕ, t) = 0.
Solutions (39) and (40) satisfy the linearized system of constraints, equations (17)

and (18), as one can see by angular integration.
Thus, we see that the time evolution of the perturbation equation (30) is determined by

the purely imaginary exponent equation (38).
Taking the real part in equations (39) and (40) we obtain

b(r, ϕ, t) = vϕB(r) cos
[
m

(
ϕ − vϕ

r
t
)]

, (41)

n1(r, ϕ, t) = n0

{
mvϕB(r)

r
t sin

[
m

(
ϕ − vϕ

r
t
)]

− r
∂B(r)

∂r
cos

[
m

(
ϕ − vϕ

r
t
)]}

. (42)

As a result the whole solution for the velocity and the density profiles has the following
form:

v(r, ϕ, t) = vϕ

{
1 + B(r) cos

[
m

(
ϕ − vϕ

r
t
)]}

eϕ, (43)

n(r, ϕ, t) = n0

{
1 +

mvϕB(r)

r
t sin

[
m

(
ϕ − vϕ

r
t
)]

− r
∂B(r)

∂r
cos

[
m

(
ϕ − vϕ

r
t
)]}

. (44)

The velocity field is shown in figure 3 for m = 1 and r = 5 m.
Together with the oscillatory contributions we now also have the contribution proportional

to t times an oscillating function. This does not necessarily mean that the stationary vortical
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Figure 3. The total velocity field v(r, ϕ, t)/vϕ and vϕ(r)/vϕ = 1 as a function of ϕ and t∗ = vϕt/r

for m = 1 and r = 5 m.

flow is unstable. The linear analysis does not give the definitive answer regarding the stability
of the stationary flow, and further investigation of higher order terms is required. Note that
such a situation is typical for Hamiltonian systems which are conservative by definition and
therefore do not display an asymptotic type of stability [15]. Though the system under
consideration is not Hamiltonian, one may suppose that the reason for the neutral stability is
the dissipative-free character of the dynamics.

4. Conclusions

In this paper, we considered the stability properties of the planar stationary flows of the local
hydrodynamic model constructed in our first paper for a system of self-propelling particles
[12]. These flows are the linear flow and the axially symmetric flow. Our analysis shows for
linear flow, using linear perturbation theory, that the time evolution of the imposed velocity
and density perturbations are oscillatory. It follows that the linear flows are neutrally stable.
For axially symmetric (vortical) flow linear perturbation theory does not lead to a conclusive
result. A definitive answer about the nature of the stability can only be given by considering
also higher order terms in the perturbation expansion. Such an analysis is beyond the scope
of the present paper.
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